Random block matrices and matrix orthogonal polynomials

نویسندگان

  • Holger Dette
  • Bettina Reuther
چکیده

In this paper we consider random block matrices, which generalize the general beta ensembles, which were recently investigated by Dumitriu and Edelmann (2002, 2005). We demonstrate that the eigenvalues of these random matrices can be uniformly approximated by roots of matrix orthogonal polynomials which were investigated independently from the random matrix literature. As a consequence we derive the asymptotic spectral distribution of these matrices. The limit distribution has a density, which can be represented as the trace of an integral of densities of matrix measures corresponding to the Chebyshev matrix polynomials of the first kind. Our results establish a new relation between the theory of random block matrices and the field of matrix orthogonal polynomials, which have not been explored so far in the literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution of delay differential equations via operational matrices of hybrid of block-pulse functions and Bernstein polynomials

In this paper, we introduce hybrid of block-pulse functions and Bernstein polynomials and derive operational matrices of integration, dual, differentiation, product and delay of these hybrid functions by a general procedure that can be used for other polynomials or orthogonal functions. Then, we utilize them to solve delay differential equations and time-delay system. The method is based upon e...

متن کامل

Random block matrices generalizing the classical ensembles

In this paper we consider random block matrices which generalize the classical Laguerre ensemble and the Jacobi ensemble. We show that the random eigenvalues of the matrices can be uniformly approximated by the roots of matrix orthogonal polynomials and obtain a rate for the maximum difference between the eigenvalues and the roots. This relation between the random block matrices and matrix orth...

متن کامل

The Analytic Theory of Matrix Orthogonal Polynomials

We survey the analytic theory of matrix orthogonal polynomials. MSC: 42C05, 47B36, 30C10 keywords: orthogonal polynomials, matrix-valued measures, block Jacobi matrices, block CMV matrices

متن کامل

COMPOSITE INTERPOLATION METHOD AND THE CORRESPONDING DIFFERENTIATION MATRIX

Properties of the hybrid of block-pulse functions and Lagrange polynomials based on the Legendre-Gauss-type points are investigated and utilized to define the composite interpolation operator as an extension of the well-known Legendre interpolation operator. The uniqueness and interpolating properties are discussed and the corresponding differentiation matrix is also introduced. The appl...

متن کامل

Random Polynomials, Random Matrices, and L-functions, Ii

We show that the Circular Orthogonal Ensemble of random matrices arises naturally from a family of random polynomials. This sheds light on the appearance of random matrix statistics in the zeros of the Riemann zeta-function.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008